If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2=90
We move all terms to the left:
2y^2-(90)=0
a = 2; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·2·(-90)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*2}=\frac{0-12\sqrt{5}}{4} =-\frac{12\sqrt{5}}{4} =-3\sqrt{5} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*2}=\frac{0+12\sqrt{5}}{4} =\frac{12\sqrt{5}}{4} =3\sqrt{5} $
| 5-w=189 | | 7+2.x=31 | | 6s+40=106 | | 24−-9k=51 | | 4b+16+2b=46+3 | | 24+2=-6(m+1)+18 | | -35=-5/2x | | 5w/4=-35 | | 4m=-2m | | 4=y-78/3 | | n/3+31=23 | | .36+3n=6n | | t/4+43=38 | | 36+3n=6n | | y/5-18=-11 | | c-66/7=3 | | 5(s+14)=95 | | 1238 c−2=32 c− | | -4(x=3)=20 | | 6m+1=5m+5 | | y/10-46=52 | | f/4+62=72 | | 7y+(4y+15)+(4y+15)=180 | | 7(g-91)=28 | | r+45/8=-4 | | v-73/2=7 | | x-11=-3x+29 | | 8x-6=x+22 | | -2(c-79)=8 | | -5=w-11/10 | | 3/10x=9/10x+30 | | y/3-7=1 |